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In the wake of  the computer revolution, linear algebra has grown in prominence in 
mathematics curricula, rivaling the significance of  calculus. Linear Algebra with Applications, 
now in its 10th edition, helps students negotiate this development.

The text covers all topics recommended by the Linear Algebra Curriculum Study Group 
(LACSG) and is also concurrent with the Group’s suggestions on the use of  technology in 
first courses in linear algebra.

With extensive revisions and new exercises and applications, this book offers an 
enhanced opportunity to either revisit or master the fundamentals of  the discipline, 
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technology-assisted instruction of  the subject matter, while applications added throughout 
the textbook illustrate the relevance of  each chapter’s content.

Instructors will find the content in the book easy to cover in the two-semester course 
format prescribed by the LACSG but also flexible enough to be taught in a one-semester 
course. Suggested course outlines are provided in the Preface.
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Preface

We are pleased to see the text reach its tenth edition. The continued support and enthu-
siasm of its many users have been most gratifying. Linear algebra is more exciting now
than at almost any time in the past. Its applications continue to spread to more and more
fields. Largely due to the computer revolution of the last 75 years, linear algebra has
risen to a role of prominence in the mathematical curriculum rivaling that of calculus.
Modern software has also made it possible to dramatically improve the way the course
is taught.

The first edition of this book was published in 1980. Each of the following edi-
tions has seen significant modifications including the addition of comprehensive sets of
MATLAB computer exercises, a dramatic increase in the number of applications, and
many revisions in the various sections of the book. We have been fortunate to have had
outstanding reviewers, and their suggestions have led to many important improvements
in the book.

What’s New in the Tenth Edition?

You may have noticed something new on the cover of the book. Another author! Yes,
after nearly 40 years as a “solo act,” Steve Leon has a partner. New co-author Lisette
de Pillis is a professor at Harvey Mudd College and brings her passion for teaching and
solving real-world problems to this revision.

This revision also features over 150 new and revised exercises for practice.

Overview of Text

This book is suitable for either a lower or upper division Linear Algebra course. The
student should have some familiarity with the basics of differential and integral calculus.
This prerequisite can be met by either one semester or two quarters of elementary
calculus.

If the text is used for a lower-level course, the instructor should probably spend
more time on the early chapters and omit many of the sections in the later chapters. For
more advanced courses, a quick review of the topics in the first two chapters and then
a more complete coverage of the later chapters would be appropriate. The explanations
in the text are given in sufficient detail so that beginning students should have little
trouble reading and understanding the material. To further aid the student, a large num-
ber of examples have been worked out completely. Additionally, computer exercises
at the end of each chapter give students the opportunity to perform numerical experi-
ments and try to generalize the results. Applications are presented throughout the book.
These applications can be used to motivate new material or to illustrate the relevance
of material that has already been covered.

9
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The text contains all the topics recommended by the National Science Foundation
(NSF) sponsored Linear Algebra Curriculum Study Group (LACSG) and much more.
Although there is more material than can be covered in a single course, it is our belief
that it is easier for an instructor to leave out or skip material than it is to supplement
a book with outside material. Even if many topics are omitted, the book should still
provide students with a feeling for the overall scope of the subject matter. Furthermore,
students may use the book later as a reference and consequently may end up learning
omitted topics on their own.

Suggested Course Outlines

We include here a number of outlines for one-semester courses at either the lower or
upper-division levels, and with either a matrix-oriented emphasis or a slightly more
theoretical emphasis.

1. One-Semester Lower Division Course
A. Basic Lower Level Course

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 9 lectures
Chapter 4 Sections 1–3 4 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–3 4 lectures

Total 35 lectures

B. LACSG Matrix-Oriented Course
The core course recommended by the LACSG involves only the Euclidean
vector spaces. Consequently, for this course you should omit Section 1
of Chapter 3 (on general vector spaces) and all references and exercises
involving function spaces in Chapters 3 to 6. All the topics in the LACSG
core syllabus are included in the text. It is not necessary to introduce any
supplementary materials. The LACSG recommended 28 lectures to cover the
core material. This is possible if the class is taught in lecture format with
an additional recitation section meeting once a week. If the course is taught
without recitations, it is our contention that the following schedule of 35
lectures is perhaps more reasonable.

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 2–6 7 lectures
Chapter 4 Sections 1–3 2 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1, 3–5 8 lectures

Total 35 lectures
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2. One-Semester Upper-Level Courses
The coverage in an upper-division course is dependent on the background of the
students. Following are two possible courses.
Option A: Minimal background in linear algebra

Chapter 1 Sections 1–6 6 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 7 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–7, 8* 10 lectures
Chapter 7 Section 4 1 lecture

Total 35 lectures
* If time allows.

Option B: Some background in linear algebra

Review of Topics in 5 lectures
Chapters 1–3
Chapter 4 Sections 1–3 2 lectures
Chapter 5 Sections 1–6 10 lectures
Chapter 6 Sections 1–7, 8* 11 lectures
Chapter 7 Sections 1–3*, 4–7 7 lectures
Chapter 8 Sections 1–2* 2 lectures

Total 37 lectures
* If time allows.

3. Two-Semester Sequence
Although two semesters of linear algebra have been recommended by the LACSG,
it is still not practical at many universities and colleges. At present, there is no
universal agreement on a core syllabus for a second course. In a two-semester se-
quence, it is possible to cover all 43 sections of the book. You might also consider
adding a lecture or two in order to demonstrate how to use MATLAB.

Computer Exercises

The text contains a section of computing exercises at the end of each chapter. These
exercises are based on the software package MATLAB. The MATLAB Appendix in
the book explains the basics of using the software. MATLAB has the advantage that
it is a powerful tool for matrix computations, yet it is easy to learn. After reading the
Appendix, students should be able to do the computing exercises without having to refer
to any other software books or manuals. To help students get started, we recommend a
one 50-minute classroom demonstration of the software. The assignments can be done
either as ordinary homework assignments or as part of a formally scheduled computer
laboratory course.
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Although the course can be taught without any reference to a computer, we be-
lieve that computer exercises can greatly enhance student learning and provide a new
dimension to linear algebra education. One of the recommendations of the LASCG is
that technology should be used in a first course in linear algebra. That recommenda-
tion has been widely accepted, and it is now common to see mathematical software
packages used in linear algebra courses.
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Matrices and Systems of Equations
One of the most important problems in mathematics is that of solving a system of linear
equations. Well over 75 percent of all mathematical problems encountered in scientific
or industrial applications involve solving a linear system at some stage. By using the
methods of modern mathematics, it is often possible to take a sophisticated problem
and reduce it to a single system of linear equations. Linear systems arise in applications
to such areas as business, economics, sociology, ecology, demography, genetics, elec-
tronics, engineering, and physics. Therefore, it seems appropriate to begin this book
with a section on linear systems.

1.1 Systems of Linear Equations

A linear equation in n unknowns is an equation of the form

a1x1 + a2x2 + · · · + anxn = b

where a1, a2, . . . , an and b are real numbers and x1, x2, . . . , xn are variables. A linear
system of m equations in n unknowns is then a system of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(1)

where the aij’s and the bi’s are all real numbers. We will refer to systems of the form (1)
as m× n linear systems. The following are examples of linear systems:

(a) x1 + 2x2 = 5
2x1 + 3x2 = 8

(b) x1 − x2 + x3 = 2
2x1 + x2 − x3 = 4

(c) x1 + x2 = 2
x1 − x2 = 1
x1 = 4

15
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System (a) is a 2× 2 system, (b) is a 2× 3 system, and (c) is a 3× 2 system.
By a solution of an m × n system, we mean an ordered n-tuple of numbers

(x1, x2, . . . , xn) that satisfies all the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

1 · (1) + 2 · (2) = 5
2 · (1) + 3 · (2) = 8

The ordered triple (2, 0, 0) is a solution of system (b), since

1 · (2) − 1 · (0) + 1 · (0) = 2
2 · (2) + 1 · (0) − 1 · (0) = 4

Actually, system (b) has many solutions. If α is any real number, it is easily seen that
the ordered triple (2, α, α) is a solution. However, system (c) has no solution. It follows
from the third equation that the first coordinate of any solution would have to be 4.
Using x1 = 4 in the first two equations, we see that the second coordinate must satisfy

4 + x2 = 2
4 − x2 = 1

Since there is no real number that satisfies both of these equations, the system has no
solution. If a linear system has no solution, we say that the system is inconsistent. If
the system has at least one solution, we say that it is consistent. Thus, system (c) is
inconsistent, while systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the solution set of the system.
If a system is inconsistent, its solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we must find its solution set.

2× 2 Systems
Let us examine geometrically a system of the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Each equation can be represented graphically as a line in the plane. The ordered pair
(x1, x2) will be a solution of the system if and only if it lies on both lines. For example,
consider the three systems

(i) x1 + x2 = 2
x1 − x2 = 2

(ii) x1 + x2 = 2
x1 + x2 = 1

(iii) x1 + x2 = 2
−x1 − x2 = −2

The two lines in system (i) intersect at the point (2, 0). Thus, {(2, 0)} is the solution
set of (i). In system (ii), the two lines are parallel. Therefore, system (ii) is inconsistent
and hence its solution set is empty. The two equations in system (iii) both represent the
same line. Any point on this line will be a solution of the system (see Figure 1.1.1).

In general, there are three possibilities: the lines intersect at a point, they are paral-
lel, or both equations represent the same line. The solution set then contains either one,
zero, or infinitely many points.
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(i) Unique Solution: Intersecting Lines
     Intersecting Point (2, 0)

(iii) Infinite Solutions: Same Line

(2, 0)

(ii) No Solution: Parallel Lines

x2

x1

x2

x1

x2

x1

Figure 1.1.1.

The situation is the same for m× n systems. An m× n system may or may not be
consistent. If it is consistent, it must have either exactly one solution or infinitely many
solutions. These are the only possibilities. We will see why this is so in Section 1.2
when we study the row echelon form. Of more immediate concern is the problem of
finding all solutions of a given system. To tackle this problem, we introduce the notion
of equivalent systems.

Equivalent Systems
Consider the two systems

(a) 3x1 + 2x2 − x3 = −2
x2 = 3

2x3 = 4

(b) 3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

3x1 + 2x2 + x3 = 2

System (a) is easy to solve because it is clear from the last two equations that x2 = 3
and x3 = 2. Using these values in the first equation, we get

3x1 + 2 · 3 − 2 = −2
x1 = −2
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Thus, the solution of the system is (−2, 3, 2). System (b) seems to be more difficult
to solve. Actually, system (b) has the same solution as system (a). To see this, add the
first two equations of the system:

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

x2 = 3

If (x1, x2, x3) is any solution of (b), it must satisfy all the equations of the system. Thus,
it must satisfy any new equation formed by adding two of its equations. Therefore, x2

must equal 3. Similarly, (x1, x2, x3) must satisfy the new equation formed by subtracting
the first equation from the third:

3x1 + 2x2 + x3 = 2
3x1 + 2x2 − x3 = −2

2x3 = 4

Therefore, any solution of system (b) must also be a solution of system (a). By a similar
argument, it can be shown that any solution of (a) is also a solution of (b). This can be
done by subtracting the first equation from the second:

x2 = 3
3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

Then add the first and third equations:

3x1 + 2x2 − x3 = −2
2x3 = 4

3x1 + 2x2 + x3 = 2

Thus, (x1, x2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(−2, 3, 2)}.

Definition Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

If we interchange the order in which two equations of a system are written, this
will have no effect on the solution set. The reordered system will be equivalent to the
original system. For example, the systems

x1 + 2x2 = 4
3x1 − x2 = 2
4x1 + x2 = 6

and
4x1 + x2 = 6
3x1 − x2 = 2

x1 + 2x2 = 4
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both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

x1 + x2 + x3 = 3
−2x1 − x2 + 4x3 = 1

and
2x1 + 2x2 + 2x3 = 6
−2x1 − x2 + 4x3 = 1

are equivalent.
If a multiple of one equation is added to another equation, the new system will be

equivalent to the original system. This follows since the n-tuple (x1, . . . , xn) will satisfy
the two equations

ai1x1 + · · · + ainxn = bi

aj1x1 + · · · + ajnxn = bj

if and only if it satisfies the equations

ai1x1 + · · · + ainxn = bi

(aj1 + αai1)x1 + · · · + (ajn + αain)xn = bj + αbi

To summarize, there are three operations that can be used on a system to obtain an
equivalent system:

I. The order in which any two equations are written may be interchanged.
II. Both sides of an equation may be multiplied by the same nonzero real number.

III. A multiple of one equation may be added to (or subtracted from) another.

Given a system of equations, we may use these operations to obtain an equivalent
system that is easier to solve.

n× n Systems
Let us restrict ourselves to n×n systems for the remainder of this section. We will show
that if an n× n system has exactly one solution, then operations I and III can be used
to obtain an equivalent “strictly triangular system.”

Definition A system is said to be in strict triangular form if, in the kth equation, the coef-
ficients of the first k − 1 variables are all zero and the coefficient of xk is nonzero
(k = 1, . . . , n).

EXAMPLE 1 The system

3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4
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is in strict triangular form, since in the second equation the coefficients are 0, 1,−1, re-
spectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because of
the strict triangular form, the system is easy to solve. It follows from the third equation
that x3 = 2. Using this value in the second equation, we obtain

x2 − 2 = 2 or x2 = 4

Using x2 = 4, x3 = 2 in the first equation, we end up with

3x1 + 2 · 4 + 2 = 1
x1 = −3

Thus, the solution of the system is (−3, 4, 2).

Any n × n strictly triangular system can be solved in the same manner as the last
example. First, the nth equation is solved for the value of xn. This value is used in the
(n − 1)st equation to solve for xn−1. The values xn and xn−1 are used in the (n − 2)nd
equation to solve for xn−2, and so on. We will refer to this method of solving a strictly
triangular system as back substitution.

EXAMPLE 2 Solve the system

2x1 − x2 + 3x3 − 2x4 = 1
x2 − 2x3 + 3x4 = 2

4x3 + 3x4 = 3
4x4 = 4

Solution
Using back substitution, we obtain

4x4 = 4
4x3 + 3 · 1 = 3

x2 − 2 · 0 + 3 · 1 = 2
2x1 − (−1) + 3 · 0 − 2 · 1 = 1

x4 = 1
x3 = 0
x2 = −1
x1 = 1

Thus, the solution is (1,−1, 0, 1).

In general, given a system of n linear equations in n unknowns, we will use opera-
tions I and III to try to obtain an equivalent system that is strictly triangular. (We will
see in the next section of the book that it is not possible to reduce the system to strictly
triangular form in the cases where the system does not have a unique solution.)

EXAMPLE 3 Solve the system

x1 + 2x2 + x3 = 3
3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4
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Solution
Subtracting 3 times the first row from the second row yields

−7x2 − 6x3 = −10

Subtracting 2 times the first row from the third row yields

−x2 − x3 = −2

If the second and third equations of our system, respectively, are replaced by these new
equations, we obtain the equivalent system

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10
−x2 − x3 = −2

If the third equation of this system is replaced by the sum of the third equation and − 1
7

times the second equation, we end up with the following strictly triangular system:

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10

− 1
7 x3 = − 4

7

Using back substitution, we get

x3 = 4, x2 = −2, x1 = 3

Let us look back at the system of equations in the last example. We can associate
with that system a 3× 3 array of numbers whose entries are the coefficients of the xi’s:

⎧
⎪⎪⎪⎪⎪⎩

1 2 1
3 −1 −3
2 3 1

⎫
⎪⎪⎪⎪⎪⎭

We will refer to this array as the coefficient matrix of the system. The term matrix
means a rectangular array of numbers. A matrix having m rows and n columns is said
to be m×n. A matrix is said to be square if it has the same number of rows and columns,
that is, if m = n.

If we attach to the coefficient matrix an additional column whose entries are the
numbers on the right-hand side of the system, we obtain the new matrix

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫
⎪⎪⎪⎪⎪⎭
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We will refer to this new matrix as the augmented matrix. In general, when an m × r
matrix B is attached to an m× n matrix A in this way, the augmented matrix is denoted
by (A|B). Thus, if

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 b12 · · · b1r

b21 b22 · · · b2r
...

bm1 bm2 · · · bmr

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then

(A|B) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b11 · · · b1r
...

...
am1 · · · amn bm1 · · · bmr

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

With each system of equations, we may associate an augmented matrix of the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b1
...

...
am1 · · · amn bm

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

The system can be solved by performing operations on the augmented matrix. The xi’s
are placeholders that can be omitted until the end of the computation. Corresponding
to the three operations used to obtain equivalent systems, the following row operations
may be applied to the augmented matrix:

Elementary Row Operations

I. Interchange two rows.
II. Multiply a row by a nonzero real number.

III. Replace a row by the sum of that row and a multiple of another row.

Returning to the example, we find that the first row is used to eliminate the elements
in the first column of the remaining rows. We refer to the first row as the pivotal row.
For emphasis, the entries in the pivotal row are all in bold type and the entire row is
color shaded. The first nonzero entry in the pivotal row is called the pivot.

entries to be eliminated
a21 = 3 and a31 = 2

}

→

⎧
⎪⎪⎪⎪⎪⎩

(pivot a11 = 1) 1 2 1 3 ← pivotal row
3 −1 −3 −1
2 3 1 4

⎫
⎪⎪⎪⎪⎪⎭

By using row operation III, 3 times the first row is subtracted from the second row and
2 times the first row is subtracted from the third. When this is done, we end up with the
matrix

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10 ← pivotal row
0 −1 −1 −2

⎫
⎪⎪⎪⎪⎪⎭
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At this step, we choose the second row as our new pivotal row and apply row opera-
tion III to eliminate the last element in the second column. This time the pivot is −7
and the quotient −1

−7 = 1
7 is the multiple of the pivotal row that is subtracted from the

third row. We end up with the matrix
⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10
0 0 − 1

7 − 4
7

⎫
⎪⎪⎪⎪⎪⎭

This is the augmented matrix for the strictly triangular system, which is equivalent to
the original system. The solution of the system is easily obtained by back substitution.

EXAMPLE 4 Solve the system

− x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 6

2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

Solution
The augmented matrix for this system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Since it is not possible to eliminate any entries by using 0 as a pivot element, we will
use row operation I to interchange the first two rows of the augmented matrix. The new
first row will be the pivotal row and the pivot element will be 1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pivot a11 = 1) 1 1 1 1 6 ← pivotal row
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Row operation III is then used twice to eliminate the two nonzero entries in the first
column:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 2 −1 −4 −13
0 −2 −5 −1 −15

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Next, the second row is used as the pivotal row to eliminate the entries in the second
column below the pivot element −1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 −3 −3 −15

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Finally, the third row is used as the pivotal row to eliminate the last element in the third
column:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 0 −1 −2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This augmented matrix represents a strictly triangular system. Solving by back substi-
tution, we obtain the solution (2,−1, 3, 2).

In general, if an n× n linear system can be reduced to strictly triangular form, then
it will have a unique solution that can be obtained by performing back substitution on
the triangular system. We can think of the reduction process as an algorithm involving
n− 1 steps. At the first step, a pivot element is chosen from among the nonzero entries
in the first column of the matrix. The row containing the pivot element is called the
pivotal row. We interchange rows (if necessary) so that the pivotal row is the new first
row. Multiples of the pivotal row are then subtracted from each of the remaining n− 1
rows so as to obtain 0’s in the first entries of rows 2 through n. At the second step, a
pivot element is chosen from the nonzero entries in column 2, rows 2 through n, of
the matrix. The row containing the pivot is then interchanged with the second row of
the matrix and is used as the new pivotal row. Multiples of the pivotal row are then
subtracted from the remaining n− 2 rows so as to eliminate all entries below the pivot
in the second column. The same procedure is repeated for columns 3 through n − 1.
Note that at the second step row 1 and column 1 remain unchanged, at the third step
the first two rows and first two columns remain unchanged, and so on. At each step, the
overall dimensions of the system are effectively reduced by 1 (see Figure 1.1.2).

If the elimination process can be carried out as described, we will arrive at an
equivalent strictly triangular system after n− 1 steps. However, the procedure will break
down if, at any step, all possible choices for a pivot element are equal to 0. When this
happens, the alternative is to reduce the system to certain special echelon, or staircase-
shaped, forms. These echelon forms will be studied in the next section. They will also
be used for m× n systems, where m �= n.
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SECTION 1.1 EXERCISES
1. Use back substitution to solve each of the following

systems of equations:

(a) x1 + x2 = 7

2x2 = 6

(b) x1 + x2 + x3 = 10

2x2 + x3 = 11

2x3 = 14
(c) x1 + 2x2 + 3x3 + 4x4 = 6

7x2 − x3 + 2x4 = 5
x3 − 4x4 = −9

4x4 = 8

(d) x1 + x2 + 16x3 + 3x4 + x5 = 5

4x2 + 4x3 + 6x4 + 3x5 = 1

−8x3 + 27x4 − 7x5 = 7

3x4 + 11x5 = 1

x5 = 0

2. Write out the coefficient matrix for each of the systems
in Exercise 1.

3. In each of the following systems, interpret each equa-
tion as a line in the plane. For each system, graph
the lines and determine geometrically the number of
solutions.
(a) x1 + x2 = 4

x1 − x2 = 2
(b) x1 + 2x2 = 4
−2x1 − 4x2 = 4

(c) 2x1 − x2 = 3
−4x1 + 2x2 = −6

(d) x1 + x2 = 1
x1 − x2 = 1
−x1 + 3x2 = 3

4. Write an augmented matrix for each of the systems in
Exercise 3.

5. Write out the system of equations that corresponds to
each of the following augmented matrices:

(a)
⎧
⎪⎩

3 0 6
0 2 4

⎫
⎪⎭ (b)

⎧
⎪⎩

1 −1 5 8
3 0 2 0

⎫
⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 −2 1 4
7 0 5 2
−3 2 0 0

⎫
⎪⎪⎪⎪⎪⎭

(d)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −2 0 −8 5
2 1 3 4 6
0 −3 1 −1 7
8 4 1 1 9

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

6. Solve each of the following systems:

(a) x1 − x2 = 11
x1 + x2 = −1

(b) 3x1 − 2x2 = −5
2x1 + 3x2 = 27

(c) 4x1 + 1
2 x2 = 2

7
3 x1 + 14x2 = 9

(d) x1 + 2x2 − x3 = −6
2x1 − x2 + x3 = 7
−x1 + x2 + 2x3 = 3

(e) x1 + 3x2 + 5x3 = 27

2x1 + 4x2 + 6x3 = 30

2x1 + 2x2 + 3x3 = 11

(f) 2x1 − x2 + 4x3 = −4

x1 + 3x2 − x3 = 8

3x1 − x2 − x3 = 2

(g) 3
5 x1 + 1

3 x2 + 2
3 x3 = 1

5
7 x1 − 2

5 x2 − 3
5 x3 = −1

1
10 x1 + 2

10 x2 + 3
10 x3 = 1

2

(h) x1 + 2x2 + 2x3 + x4 = 7

x1 − 3x2 + x3 − x4 = 2

3x1 − x2 + x3 + x4 = 0

2x1 + 2x3 = 8

7. The two systems

x1 + 2x2 = 8
4x1 − 3x2 = −1

and
x1 + 2x2 = 7

4x1 − 3x2 = 6

have the same coefficient matrix but different right-hand
sides. Solve both systems simultaneously by eliminating
the first entry in the second row of the augmented matrix:

⎧
⎪⎪⎩

1 2 8 7
4 −3 −1 6

⎫
⎪⎪⎭

and then performing back substitutions for each of the
columns corresponding to the right-hand sides.

8. Solve the two systems

x1 + 2x2 − x3 = 6

2x1 − x2 + 3x3 = −3

x1 + x2 − 4x3 = 7

and

x1 + 2x2 − x3 = 9

2x1 − x2 + 3x3 = −2

x1 + x2 − 4x3 = 9

by doing elimination on a 3 × 5 augmented matrix and
then performing two back substitutions.

9. Given a system of the form

−m1x1 + x2 = b1

−m2x1 + x2 = b2

where m1, m2, b1, and b2 are constants:
(a) Show that the system will have a unique solution if

m1 �= m2.
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(b) Show that if m1 = m2, then the system will be
consistent only if b1 = b2.

(c) Give a geometric interpretation of parts (a) and (b).
10. Consider a system of the form

a11x1 + a12x2 = 0
a21x1 + a22x2 = 0

where a11, a12, a21, and a22 are constants. Explain why a
system of this form must be consistent.

11. Give a geometrical interpretation of a linear equa-
tion in three unknowns. Give a geometrical description
of the possible solution sets for a 3 × 3 linear
system.

1.2 Row Echelon Form

In Section 1.1, we learned a method for reducing an n× n linear system to strict trian-
gular form. However, this method will fail if, at any stage of the reduction process, all
the possible choices for a pivot element in a given column are 0.

EXAMPLE 1 Consider the system represented by the augmented matrix

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 ← pivotal row
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 −1
1 1 2 2 4 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

If row operation III is used to eliminate the nonzero entries in the last four rows of the
first column, the resulting matrix will be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0 ← pivotal row
0 0 2 2 5 3
0 0 1 1 3 −1
0 0 1 1 3 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

At this stage, the reduction to strict triangular form breaks down. All four possible
choices for the pivot element in the second column are 0. How do we proceed from
here? Since our goal is to simplify the system as much as possible, it seems natural to
move over to the third column and eliminate the last three entries:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 −1
0 0 0 0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In the fourth column, all the choices for a pivot element are 0; so again, we move on to
the next column. If we use the third row as the pivotal row, the last two entries in the
fifth column are eliminated and we end up with the matrix
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −4
0 0 0 0 0 −3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The coefficient matrix that we end up with is not in strict triangular form; it is in stair-
case, or echelon, form. The horizontal and vertical line segments in the array for the
coefficient matrix indicate the structure of the staircase form. Note that the vertical
drop is 1 for each step, but the horizontal span for a step can be more than 1.
The equations represented by the last two rows are

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −4
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −3

Since there are no 5-tuples that could satisfy these equations, the system is inconsistent.

Suppose now that we change the right-hand side of the system in the last example
so as to obtain a consistent system. For example, if we start with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 3
1 1 2 2 4 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then the reduction process will yield the echelon-form augmented matrix

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The last two equations of the reduced system will be satisfied for any 5-tuple. Thus, the
solution set will be the set of all 5-tuples satisfying the first three equations.

x1 + x2 + x3 + x4 + x5 = 1
x3 + x4 + 2x5 = 0

x5 = 3
(1)

The variables corresponding to the first nonzero elements in each row of the reduced
matrix will be referred to as lead variables. Thus, x1, x3, and x5 are the lead variables.
The remaining variables corresponding to the columns skipped in the reduction process
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will be referred to as free variables. Hence, x2 and x4 are the free variables. If we transfer
the free variables over to the right-hand side in (1), we obtain the system

x1 + x3 + x5 = 1− x2 − x4

x3 + 2x5 = −x4

x5 = 3
(2)

System (2) is strictly triangular in the unknowns x1, x3, and x5. Thus, for each pair of
values assigned to x2 and x4, there will be a unique solution. For example, if x2 = x4 =
0, then x5 = 3, x3 = −6, and x1 = 4, and hence (4, 0,−6, 0, 3) is a solution of the
system.

Definition A matrix is said to be in row echelon form if

(i) The first nonzero entry in each nonzero row is 1.
(ii) If row k does not consist entirely of zeros, the number of leading zero

entries in row k + 1 is greater than the number of leading zero entries in
row k.

(iii) If there are rows whose entries are all zero, they are below the rows having
nonzero entries.

EXAMPLE 2 The following matrices are in row echelon form:

⎧
⎪⎪⎪⎪⎪⎩

1 4 2
0 1 3
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎩

1 2 3
0 0 1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎩

1 3 1 0
0 0 1 3
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

EXAMPLE 3 The following matrices are not in row echelon form:

⎧
⎪⎪⎪⎪⎪⎩

2 4 6
0 3 5
0 0 4

⎫
⎪⎪⎪⎪⎪⎭

,
⎧
⎪⎩

0 0 0
0 1 0

⎫
⎪⎭ ,

⎧
⎪⎩ 0 1

1 0

⎫
⎪⎭

The first matrix does not satisfy condition (i). The second matrix fails to satisfy
condition (iii), and the third matrix fails to satisfy condition (ii).

Definition The process of using row operations I, II, and III to transform a linear system
into one whose augmented matrix is in row echelon form is called Gaussian
elimination.

Note that row operation II is necessary in order to scale the rows so that the leading
coefficients are all 1. If the row echelon form of the augmented matrix contains a row
of the form

⎧
⎩ 0 0 · · · 0 1

⎫
⎭
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the system is inconsistent. Otherwise, the system will be consistent. If the system is
consistent and the nonzero rows of the row echelon form of the matrix form a strictly
triangular system, the system will have a unique solution.

Overdetermined Systems
A linear system is said to be overdetermined if there are more equations than unknowns.
Overdetermined systems are usually (but not always) inconsistent.

EXAMPLE 4 Solve each of the following overdetermined systems:

(a) x1 + x2 = 1
x1 − x2 = 3
−x1 + 2x2 = −2

(b) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
2x1 − x2 + 3x3 = 5

(c) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
3x1 + x2 + 2x3 = 3

Solution
Gaussian elimination was applied to put these systems into row-echelon form (steps not
shown). Thus, we may write

System (a):

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
1 −1 3
−1 2 −2

⎫
⎪⎪⎪⎪⎪⎭
→
⎧
⎪⎪⎪⎪⎪⎩

1 1 1
0 1 −1
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

The last row of the reduced matrix tells us that 0x1 + 0x2 = 1. Since this is never
possible, the system must be inconsistent. The three equations in system (a) represent
lines in the plane. The first two lines intersect at the point (2,−1). However, the third
line does not pass through this point. Thus, there are no points that lie on all three lines
(see Figure 1.2.1).

x2

x12

–1

No Solution: Inconsistent System

Figure 1.2.1.
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System (b):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1

2 −1 1 2

4 3 3 4

2 −1 3 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1

0 1 1
5 0

0 0 1 3
2

0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Using back substitution, we see that system (b) has exactly one solution (0.1,−0.3, 1.5).
The solution is unique because the nonzero rows of the reduced matrix form a strictly
triangular system.

System (c):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
2 −1 1 2
4 3 3 4
3 1 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
0 1 1

5 0
0 0 0 0
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Solving for x2 and x1 in terms of x3, we obtain

x2 = −0.2x3

x1 = 1− 2x2 − x3 = 1− 0.6x3

It follows that the solution set consists of all ordered triples of the form
(1 − 0.6α,−0.2α, α), where α is a real number. This system is consistent and has
infinitely many solutions because of the free variable x3.

Underdetermined Systems
A system of m linear equations in n unknowns is said to be underdetermined if there are
fewer equations than unknowns (m < n). Although it is possible for underdetermined
systems to be inconsistent, they are usually consistent with infinitely many solutions. It
is not possible for an underdetermined system to have a unique solution. The reason for
this is that any row echelon form of the coefficient matrix will involve r ≤ m nonzero
rows. Thus, there will be r lead variables and n − r free variables, where n − r ≥
n−m > 0. If the system is consistent, we can assign the free variables arbitrary values
and solve for the lead variables. Therefore, a consistent underdetermined system will
have infinitely many solutions.

EXAMPLE 5 Solve the following underdetermined systems:

(a) x1 + 2x2 + x3 = 1
2x1 + 4x2 + 2x3 = 3

(b) x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2

Solution

System (a):
⎧
⎪⎩

1 2 1 1
2 4 2 3

⎫
⎪⎭→

⎧
⎪⎩

1 2 1 1
0 0 0 1

⎫
⎪⎭




